

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Informática

Ficha 2 (variável)

Disciplina: Fundamentos de Programação de Computadores (2021-2)							Código: Cl182/Cl240	
Natureza: (X) Obrigatória () Optativa	(X) Semestral	() Semestral () Anual () Modular						
Pré-requisito:	Co-requisito:	Modalidade: (X) Presencial () Totalmente EaD () *c.h.EaD () 100% ERE (Ensino Remoto Emergencial), Res. 22/21-CEPE						
CH Total: 60h CH semanal: 4h	Padrão (PD): 60	Laboratório (LB): 00	Campo (CP): 00	Estágio (ES): 00	Orientada 00	a (OR):	Prática Específica (PE): 00	
	Estágio de Formação Pedagógica(EPP): 00	Extensão (EXT): 00	Prática como Componente Curricular (PCC): 00					

EMENTA (Unidade Didática)

Histórico e paradigmas de linguagens de programação. A linguagem de programação Python (v3). Variáveis e tipos de dados. Componentes de um programa. Programação procedural estruturada em blocos. Estruturas condicionais e de repetição. Vetores, listas, tuplas. Entrada e Saída. Exemplos de algoritmos.

PROGRAMA (itens de cada unidade didática)

Aulas	Datas	CONTEÚDO				
1-2	31/jan-04/fev	Apresentação do disciplina: Definição das regras, provas, notas, apresentação da bibliografia. Ambientação dos alunos ao Moodle e recursos a serem usados durante a disciplina. Introdução a algoritmos.				
3-4	07/fev-11/fev	Linguagens de programação: histórico e paradigmas. A linguagem de programação Python 3. Ferramentas para apoio à programação em Python.				
5-6	14/fev-18/fev	Variáveis e tipos de dados. Blocos de comandos.				
7-11	21/fev-11/mar	Estruturas condicionais.				
12	15/mar	Prova 1 (para turmas com aulas na 3ª- e 5ª-feira)				
12	16/mar	Prova 1 (para turmas com aulas na 4ª- e 6ª-feira)				
13-15	17/mar-25/mar	Estruturas de repetição.				
16-19	28/mar-08/abr	Estruturas de dados fundamentais: vetores, listas e tuplas.				
20-24	11/abr-27/abr	Funções simples e compostas. Entrada e saída por arquivos e passagem de argumentos.				
25	28/abr	Prova 2 (para turmas com aulas na 3ª- e 5ª-feira)				
	29/abr	Prova 2 (para turmas com aulas na 4ª- e 6ª-feira)				
	02/mai-06/mai Finalização da disciplina. Apresentação de trabalhos.					
26	03/mai	2ª-chamada Provas 1 e 2 (para turmas com aulas na 3ª- e 5ªfeira)				
20	04/mai	2ª-chamada Provas 1 e 2 (para turmas com aulas na 4ª- e 6ªfeira)				
	12/mai	Exame Final (para turmas com aulas na 3ª- e 5ª-feira)				
_	13/mai	Exame Final (para turmas com aulas na 4ª- e 6ª-feira)				

OBJETIVO GERAL

Capacitar o estudante a compreender algoritmos e aplicar técnicas básicas de programação de computadores na solução de problemas diversos, visando a confecção de seus próprios programas.

OBJETIVO ESPECÍFICO

- Introduzir o conceito de algoritmo para resolução de problemas e automação de tarefas por meio de exemplos da vida real.
- 2. Apresentar as linguagens de programação e seus paradigmas, expondo brevemente as peculiaridades e aplicações de cada um deles.
- 3. Apresentar a linguagem de programação Python 3, seu objetivo, histórico de desenvolvimento, características, vantagens e desvantagens em relação a outras linguagens existentes.
- 4. Mostrar diferentes ferramentas para programação em Python com recursos gráficos e em linha de comando, e ensinar a configuração de um ambiente para programação e execução de códigos na linguagem.
- 5. Explicar o que é um programa, quais são seus elementos estruturantes, o que são e para que servem as variáveis e os tipos de dados, e como utilizá-los em um programa.
- 6. Mostrar os comandos aceitos por uma linguagem de programação, bem como criar blocos deles para executar ações e implementar algoritmos.
- 7. Apresentar as estruturas condicionais e sua aplicação na mudança do fluxo de um programa. Comandos IF, ELIF, ELSE e aninhamento.
- 8. Apresentar as estruturas de repetição e sua aplicação em programas que necessitam de laços de iteração. Comandos FOR, WHILE e aninhamento.
- 9. Ensinar o conceito de função no âmbito de programas computacionais, passagem de parâmetros, retorno de valores, chamadas e composição.
- 10. Introduzir estruturas de dados fundamentais de armazenamento de informações e suas aplicações: vetores para dados de um tipo, listas para dados variados, tuplas para imutabilidade.
- 11. Apresentar a entrada e saída de dados por meio da chamada do programa (linha de comando), arquivos externos ou funções com argumentos.

PROCEDIMENTOS DIDÁTICOS

- 1. **Atividades síncronas:** As atividades síncronas consistirão de aulas **presenciais** em sala, com duração total de **2 horas** por aula.
- 2. Material didático específico: Serão utilizados documentos digitalizados como material de referência básico sobre o tema da disciplina. Também serão disponibilizados links para sites existentes para exercitar os conceitos básicos e eventualmente materiais já disponíveis em MOOC's (Cursos Massivos Abertos). O professor também poderá produzir vídeos próprios onde serão esclarecidos aspectos específicos ou avançados que possam surgir no decorrer da disciplina.
- 3. **Infraestrutura de suporte tecnológico, científico e instrumental à disciplina:** Os exercícios práticos de programação poderão ser executados em computadores e *smartphones*, com a utilização de ambientes de programação com licença de uso livre e disponíveis para os principais sistemas operacionais.
- 4. Previsão de período de ambientação dos recursos tecnológicos a serem utilizados pelos discentes: Previsão de período de ambientação dos recursos tecnológicos a serem utilizados pelos discentes: Haverá na primeira semana de aula a disponibilização de material de leitura indicando como deverá ser o andamento da disciplina utilizando como apoio a UFPR Virtual. Neste período, o professor enviará por e-mail as orientações para acesso inicial ao Moodle e à

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Informática

página da disciplina neste ambiente. Haverá também neste momento uma atividade síncrona de forma a esclarecer dúvidas e ajudar na solução dos eventuais problemas que possam ocorrer com o acesso on-line e instalação de programas.

- 5. Identificação do controle de frequência das atividades: O controle de frequência será feito com base no comparecimento do aluno nas aulas presenciais e na entrega de Exercícios de Programação (EP), dentro do prazo. O cumprimento das metas estabelecidas nestes exercícios contarão como presença, desde que haja completude e coerência com os conteúdos da disciplina e com o que é solicitado nesta atividade.
 - As aulas presenciais corresponderão a 26 aulas de 2 horas = 52 horas (de acordo com resoluções 22/21-CEPE e 52/21-CEPE, e instrução normativa IN 02/21-PROGRAD)
 - Os exercícios de programação (EP) corresponderão, em seu conjunto, a 8 horas, sendo a frequência assim contabilizada:

8 * (Quantidade EP's entregues / Quantidade total EP's)

- 6. **Carga horária semanal:** As atividades serão distribuídas da seguinte forma:
 - Atividades presenciais: 26 aulas com 2h/aula o que totaliza 52h presenciais no semestre.
 - Exercícios de Programação (EP): 8h/semestre de atividade fora do horário de aula presencial. O professor definirá um horário de atendimento presencial na UFPR para atendimento dos alunos durante o desenvolvimento destes exercícios.

FORMAS DE AVALIAÇÃO

Deverão ser feitas 2 (duas) provas (atividade **presencial** em sala de aula) e haverá um conjunto de exercícios de programação (**EP**) que deverão ser entregues pelo aluno dentro de um prazo estipulado.

Para a validação dos exercícios, os alunos poderão ser chamados, a critério do professor, em um momento presencial nos horários de atendimento do professor. Serão usados sistemas de detecção de similaridade nas produções dos alunos.

Em quaisquer atividades avaliativas (provas e exercícios), se forem constatadas similaridades e plágio, os alunos envolvidos serão chamados pelo professor e poderão receber nota 0 (zero), conforme regimentos vigentes na UFPR.

Provas não realizadas pelo aluno são passíveis de 2ª-chamada, nos casos amparados pelo artigo 106, Seção V, Resolução 37/97-CEPE, e considerando também o disposto no artigo 12, § 7º e 8º, Resolução 22/21-CEPE, em data e local divulgados no Cronograma da disciplina.

Os exercícios citados anteriormente deverão ser entregues dentro do prazo estipulado nos respectivos enunciados. A nota final de exercícios (**EXERCS**) será a média aritmética das notas de todos os exercícios de programação (**EP**). Exercícios não entregues terão nota 0 (zero).

O comparecimento do aluno em aula presencial e a entrega dos exercícios de programação (EP) serão contabilizados na frequência conforme indicado no item 5 dos **Procedimentos Didáticos**. A entrega dos exercícios será contabilizada como frequência ao receber a nota do professor.

Não serão aceitas entregas de exercícios após o final do período letivo previsto para a disciplina.

As médias parcial (**MP**) e final (**MF**) serão calculadas da seguinte forma, de acordo com os critérios para aprovação com ou sem exame final seguirão o disposto na Resolução 37/97-CEPE. Capítulo X, Seção I – Normas Gerais de Avaliação:

 $MP = 0.4 \times (P1 + P2) + 0.2 \times EXERCS$

Se MP \geq 70 \rightarrow Aprovado, com MF = MP

Se MP $< 40 \rightarrow$ Reprovado por nota

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Informática

Se MP \leq 40 \rightarrow Exame Final : MF = (MP + EXAME) / 2 Se MF < 50 \rightarrow Reprovado por nota

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

- [1] Raul, W. Introdução a Algoritmos e Programação com Python Uma Abordagem Dirigida Por Testes. Grupo GEN, 2017. 9788595156968. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595156968/.
- [2] Banin, S. L. Python 3 Conceitos e Aplicações Uma abordagem didática. Editora Saraiva, 2018. 9788536530253. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530253/.
- [3] Ljubomir, P. Introdução à Computação Usando Python Um Foco no Desenvolvimento de Aplicações. Grupo GEN, 2016. 9788521630937. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788521630937/.
- [4] Downey, A. B., Pense em Python (tradução da segunda edição do livro Think Python). Disponível em https://penseallen.github.io/PensePython2e/, 2016.
- [5] Wentworth, P., Elkner, J., Downey, A. B., Meyers, C. How to think like a computer scientist: Learning with Python 3. Disponível em: http://openbookproject.net/thinkcs/python/english3e/, 2012

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

- [1] Lutz, M., Ascher D. Aprendendo Python. Bookman, 2007.
- [2] Marco Medina e Cristina Fertig. Algoritmos e Programação: Teoria e Prática. 2a. edição. Novatec Editora Ltda., 2006.
- [3] Menezes, N.N.C. Introdução à Programação com Python, Novatec, 2010.
- [4] Donald E. Knuth. The Art of Computer Programming. 1997.
- [5] Sweigart, A. Making Games with Python & Pygame, http://inventwithpython.com/pygame/, 2012.

Professores da Disciplina: Prof. Giovanni Venâncio de Souza, Prof ^a Cleide Possamai					
Assinatura:					
Chefe de Departamento ou Unidade equivalente: Assinatura:					

Cl182/Cl240 - Fundamentos de Programação de Computadores

- I. Período atividades: de 31/jan/2022 a 07/maio/2022 [14 semanas]
 - 26 aulas presenciais de 2h cada = 52h presenciais
 - 8h exercícios de programação (EP)
- II. Plano de Ensino e Cronograma da disciplina

Vide Ficha 2.

III. Turmas, vagas e professor responsável:

CURSO	TURMA	VAGAS	PROFESSOR	REGIME	Horário aulas presenciais
Estatística	EST1	40	Giovanni	Presencial	4ª-feira 19:30h - 21:30h 6ª-feira 21:30h - 23:30h

IV. Contato de Professores responsáveis:

Giovanni Venâncio de Souza <gvs11ufpr@gmail.com>

Cleide Possamai < cleidepossamai@gmail.com>